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ALMOST SURE  STABILITY  OF  LONG CYLINDRICAL 

SHELLS WITH  RANDOM IMPERFECTIONS 

By  Rena  Scher  Fersht 

California  Institute of Technology 

ABSTRACT 

In this  paper a Lyapunov  method is used  to  obtain  sufficient 

conditions  for  the  buckling  stability of cylindrical  shells  with 

axisymmetric  random  imperfections. A perturbed  system of 

equations  in  the  neighborhood of the  prebuckling  solution is inves- 

tigated. By reducing  the  problem  to a system of integral  equations, 

it is observed  that  the  stability  boundary  value  problem of a long 

shell   is   similar  to  that  of a dynamical  system  with  random  para- 

metric  excitations.  

The  present  method  for  obtaining  stability  conditions  has 

been  tested  numerically  for  the  particular  case of axisymmetric 

random  imperfections of a cylindrical  shell  under  axial  compression. 

Initial  imperfections  were  assumed  to  have  Gaussian  distribution 

and  an  exponential  cosine  correlation  function.  The  critical  load 

was  obtained  as a function of the  root  mean  square of the  imperfec- 

tions.  Results  obtained  are  qualitatively  similar  to  those of Koiter 

for  a periodic  imperfection  (Ref. 1 ) .  

INTRODUCTION 

In  the last three  decades it has  been  recognized  that  small 

geometrical   imperfections  are  the  major  cause  for  the  reduction 

in  the  buckling  strength of cylindrical  shells,  subjected  to axial 

loads.  Particular  analytical  studies of the  problem,  using  approx- 

imate  techniques  and  considering  simple  periodic  modes of 

imperfections,  have  been  carried  out by Koiter  (Refs.   1,2),  

Donne11 and  Wan(Ref. 3 ) ,  Hutchinson  (Ref. 4),  Budiansky  and 

Hutchinson  (Ref. 5), Babcock  and  Sechler  (Ref. 6 )  and  others. 

Few  attempts  have  been  made to  study  problems  associated  with 



local  imperfections,  almost  periodic,  and  stationary  random  imper- 

fections. In other  words,  the  studies  that  have  been  carried  out so 

far are  related  to  ideal  cases  and  give  qualitative  insight  to  the 

problem. 

In  the  search  for a more  realist ic  description of the  geometry 

of imperfections, it was  suggested  by  Bolotin  (Ref. 7 )  that  the  imper- 

fection  function  should  be  considered as a random  variable. By using 

statistical  techniques  based  on  probability  distributions  and  their 

transformations  one  could  evaluate  the  probabilities  for  buckling 

failure.  This  outlined  procedure  is  perhaps  too  general  and  becomes 

impractical  as the  number of random  variables  increases. 

Considering  the  problem of long  cylindrical  shells, a par-  

t icular   c lass  of random  imperfections,  which  is of practical  signifi- 

cance, is the  stationary  state of imperfections  with  respect  to  the 

axial variable.  By  expanding  the  imperfection  function  in  Fourier 

series  in  the  circumferential  direction,  one  can  set up the  problem 

considering  the  Fourier  coefficients  as  the  random  variables. 

These  coefficients  are  assumed  to be stationary  with  respect  to 

the axial independent  variable  and  may  be  cross  correlated. In 

addition it is assumed  that  the  joint  probability  distribution  for  these 

coefficients is known. Further  simplification is obtained by assuming 

that  the  random  variables  satisfy  the  ergodic  property. 

In  the  present  paper  the  case of axisymmetric  random 

imperfections is treated.  The  stability  analysis  is  based upon 

Lyapunov's  direct  method,  which  has  recently  been  used by Caughey 

and  Gray  (Ref. 8) in  dynamical  systems  with  stationary  random 

parametric  excitations. By considering  the  perturbation  equations 

of the  prebuckling  solution it is  possible  to  obtain a linear  system 

of ordinary  differential  equations  with  constant  and  random  para- 

metric  coefficients. By disregarding  the  terms  with  parametric 

coefficients  the  system is reduced  to a stable  one as  long as the 

load is  below  the  classical  buckling  load. 

When the  parametric  coefficients  are  included by reducing 

the  problem  into a se t  of integral  equations it was  observed  that, 

by proper  modifications,  the  stability  analysis  is  similar  to  that 

of a dynamic  system  where  the axial variable  replaces  the  time 



variable. As soon as this   par t  of the analysis is established, the 

application of the  Lyapunov  technique  becomes  straightforward. 

Lyapunov' s method  yields  sufficient  conditions  for  stability, 

but it often  occurs  that  this  technique  leads  to  extremely  conserva- 

tive  conditions. One of the  major  problems  with  Lyapunov's  method 

is that of determining  the  proper  matrix  inequalities  in  order  to 

derive  sharper  stability  conditions.  This  part of the  problem  has 

been  handled  with  particular  care,  yet it is felt  that  this  part is 

still open, as in  dynamical  systems,  to  improvement, 

The  present  method of stability  has  been  tested  numerically 

for  the  particular  case of axisymmetric  random  imperfections. By 

considering a Gaussian  distribution  and  an  exponential  cosine 

correlation  function,  the  critical  load  was  obtained as a function 

of the  root  mean  square of the  imperfections.  The  curves  obtained 

are   s imilar   to   those of Koiter  for  the  cases  where  the  peak of the 

power  spectrum  function  coincides  with  the  frequency of the  critical 

linear  buckling  mode. 

Finally  one  should  point  out  that  the  present  study is perhaps 

only  the first step  in  this  direction. By using  the  same  technique, 

sufficient  conditions  for  stability of cylindrical  shells,  sllbjected  to 

other  types of loads, as well as deterministic,  almost  periodic 

s ta tes  of irr,$erfections,  can be obtained. 

I. PRELIMINARIES 

The  present  study  treats  the  stability of a boundary  value 

problem. In general  Lyapunov's  second  method  treats  asymptotic 

stability of dynamic  systems,  in  other  words it is related  to  initial 

value  problems. In order  to  relate  the  boundary  value  problem  to 

a n  equivalent  dynamic  system  in a steady  state  response  or a 

stationary  response  in a statistical  sense  let  us  investigate  the 

following  system of equations. 

where X is an  N-column  vector  with  the  components x i = 1 , 2 , .  . . , N, 

B is a constant N x N matrix and F ( E )  is an  N x N matrix whose 
is 
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nonzero  elements  are  stochastic  processes: 

F(5) = [fij(5)1 (1.2) 

It is assumed that the  matrix B has  at least   one  square  root A ,  

the  eigenvalues of which are  distinct  and  have  negative  real  parts. 

Now consider  the  system of equations 

with  the  conditions at infinity 

The  solution of (1 .3)  as 5 -. fa  can  be  obtained  from  the  equation 

dX - = P-x 
dE 

Fur thermore ,  as 5 -. -co the  solution  can  be  obtained  from 

Equations (1 .5 )  and  (1.6)  can be combined  to  one  equation as follows 

dX ___ = AX for  1 ~ 1  -03 
d l 5  i (1 7)  

The  stability is defined  in  the  sense  that as  5 - f 00 the  lateral  

deflection of the  shell  tends  to  zero.  This is known as asymptotic 

stability,  and  the  term  almost  sure  stability is associated  with it. 

One can  therefore  state  that  conditions  (1.4)  can  be  met if  and  only 

if there is a matrix A ,  the  eigenvalues of which  have  negative 

real   par ts .   This  last condition  together  with ( I .  4)   assures   s table  

solutions as  1 - 00, o r  by considering  (1.7)  and  selecting  the 

proper A it assures   that  (1 .  7 )  is asymptotically  stable. 

- 

Turning now to ( 1 . 1 )  and  assuming  that  for F(5)  = 0 this 

system is stable,   let  it also be  assumed that the  elements of F(E), 
f . .  ( E ) ,  satisfy  the  following  properties, 

1J 
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a. The  processes  are  continuous  in -03 < E < 00 
b.  The  processes are strictly  stationary. 

c. The  processes  satisfy  an  ergodic  property,  guaranteeing 

the  equality of the  averages  with  respect  to E and  the 

ensemble  average s . 
On  the  basis of the  assumptions  with  respect  to A and  the 

boundary  conditions at E = - +a, one  can  construct a Green's  function 

matrix associated  with ( 1 . 3 )  o r  (1.7) 

Equations  (1.1)  can  therefore be converted  into a system of integral 

By observation  one  realizes  that  equations (1 .9)  can  be  obtained 

from  the  system of equations 

q-q = - 
dX AX + *A-1 F ( E )  X (1.10) 

where  the  positive  sign  in  the  second  term,  on  the  right  hand  side, 

is taken a s  E increases  and  the  negative  sign as  it decreases.  Due 

to  symmetry it will  be  sufficient  to  investigate  the  asymptotic 

stability of (1 . 10)  only  for f: -+ 00. Hence  equations  (1.10)  can be 

reduced  to  the  form 

(1.11) 

where a proper  condition at X(0)  = X can be  selected. 
0 

From  this  point,  the  analysis  will  follow  Caughey  and  Gray 

(Ref. 8). If A i s  a stability  matrix,  there  exists a Hermitian  positive 

definite  matrix V, such  that  (Ref. 9) 

A-V + VA = -I 
4. 

where A* = xT . 
A Hermitian  matrix Q ( E )  can  be  formed as follows 

(1.12) 
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1 1 
where V” and V-” are  positive  definite  Hermitian  matrices  obtained 

as follows:  Since V is positive  definite  Hermitian matrix there exists 

an  orthogonal  transformation 0 such  that 

1 
v possesses  a unique square  root VZ 

a1 so 

Now, le t  IlQ(E) 11 be  the  norm of Q ( E ) ,  if E { I l Q ( E )  I / }  exists  and is 

less  than  l/pmaxJ  the  system of equation (1 . 11 ) is almost  surely 

stable in the  large. 

In the  particular  case  that F(5) may be written in the  form 

where G. are  constant  matrices  and f . ( E )  are  scalar  functions of E 
and M <  N it is possible  to  have a sharper  condition of stability. l 2  1 

~f iZ1 I T  max (i) I E{f. ( E ) }  exists  and is less   than 1 /p then  equation 
1 max 

(1.11 ) is  almost  surely  stable  in  the  large,  where 1 q 1 is  the 

numerically  largest  eigenvalue of the  matrix 

(1) 

m ax 

1 1 1 1 
B. = $ [V-Z(A-lG.)*VZ t VZ(A-lGi)V-T] 
1 1 

(1.15) 

2. BASIC EQUATIONS 

Let  a point  on  the  cylindrical  surface of radius R be  specified 

by its axial and  circumferential  coordinates x and  y. Due to  the 

presence of imperfections  each  point is radially  displaced  from  the 

cylindrical  surface by ;(x). It is assumed  that 

Iw(x) 1 << R ]wJx I << 1 

6 



In the  absence of surface  loads,  the  equations  expressing  equilibrium 

in  the  x  and  y  direction  for a shallow  shell  involve  only  the  membrane 

s t ress   resul tants  N N and N These  equations  are  satisfied by 

introducing  the  stress  function  F(x,y), 
x' Y XY 

Nx .- - N = F, 
Y xx XY XY 

N = -F, 

Let  w(x,y)  (positive  inwards) be the  radial  displacement of the  shell. 

In the  case of axisymmetric  imperfections  the  functions F(x, y)  and 

w(x,  y)  satisfy  the  following two nonlinear  equations, 

-V F t -  1 4  1 - - 
Eh R w 'xx  - YY - YY XY 

- -w, w, - w,  w, -t (w, )2 (2.1) 

where E i s  Young's  modulus, u Poisson's  ratio,  h is  the  shell  thick- 

ness,   Eh = membrane  rigidity, 
-2 

D = -1 = bending  rigidity EhJ 

12(1 - u  

Equation (2.1)  i s  the  compatibility  equation in membrane  strains  and 

(2.2)  i s  the  radial  equilibrium  equation. 

3.  METHOD OF SOLUTION 

Equations (2. l ) ,  (2.2) admit,   for  an  axisymmetric  imperfect 

cylindrical  shell  under  axial  compression,  an  axisymmetric  pre- 

buckling  solution  which  may be written as 

F (x ,y )  = - $ohy -t @"(x) 2 

W(X,Y)  = ER -t w (X) 
UCJ 0 
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These  equations  can be simplified by  reducing  them  to a nondimen- 

sional  form.  Let 

w = hWo 0 

Y = E .  

- 
w = h w  

Introducing  these  relations  into  (3.2)  and  (3.3)  yields 

+O* E E E E  + wo 
* E E  = o  

W0 ' E E E E  - + O y E  + 2PW0 * E E  = -2p w, 5 F  

The  solution of (3.5)  can be written in the  form 
W 

W o ( E )  = 1 Go(E-rl) Wh)  drl 
-W 

W 

+ ' ( E )  = Ho(E-r l )  W(T) drl 
-00 

where GO(C-7) and H (5-7)  are  the  Green's  functions  associated with 

the  homogeneous  part of (3.5).  These  functions  are 

0 

-a lEl  
GO(E) = 5 e [a cos  be - -  sin b 15 I ]  1 

b 
(3 7) 

where 

a = V m  b = v m  
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This  solution  remains  finite as long a s  p < 1. 

Considering  the  case of stationary  and  ergodic  random  imper- 

fections  with  zero  mean,  the  autocorrelation  functions  are  defined  as 

follows 

where E{f(E)} is the  expectation of the  function f .  Now 
00 

Introducing  the  expectation  operator  into  the  double  integral,  yields 

(3.10) 

-00 

This  is  the  desired  relation  for  the  linear  part of the  solution. 

Following  Koiter  (Ref. l ) ,  the  nonlinear  equations  (2.1), (2.2) 

may  admit  an  asymmetric  solution  adjacent  to  the  symmetric one 

which  is  specified by w'(x,  y)  and  @'(x,y).  Hence  considering 

W ( X , Y )  = v - R + w (X) + w'(x,Y) (5 0 
E (3.12) 

and  taking  into  account  that  the  devi-ation  from  the  axisyrnmetric 

configuration  is  infinitesimal one may  linearize  the  equations  with 

respect to w'(x,  y)  and @ I  (x, y).  The  compatibility  condition  and 

the  equilibrium  equation  therefore  are 

1 4  1 0 -v $ 1  + w1, = -(w , -I- w,  ) wl ,  Eh 
- 

xx  xx xx YY (3.13) 

Now, le t  

9 
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(3.15) 

Introducing  the last expressions  into  (3.13)  and  (3.14)  yields 

1 d2 n 2 2  - (T - -2) +; t - 1 w' = -2 n 20 (w,= t ,,xx)w:, 

Eh dx R R R n ,xx (3.16) 

d2 n 

dx 

2 2  1 - -  D ( 7  - F2) W' + ohw' - 
n n ,  xx R @h,xx - 

As before,  these  equations  can be reduced t o  a nondimensional  form 

using (3.4)  and  the  relations, 

which i s  

(3.18) 

where 

Now, le t  

equations  (3.18)  and  (3.14)  yield 

10 
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- - a! 2 x - 2P(ff 2 x2+x4) + 2 x1+x3 - Fl(S)Xl+F2(S)X2 
4 

where  prime  denotes  differentiation  with  respect  to 6 .  
In matrix  notation  (3.20)  may be written as 

and 

X =  

X" = A2X t F(5)X 

- i  ff 

0 

0 

2 

a 2 

0 0  

0 0  

0 1  

-1 0 

0 1 0  

CY2 0 1 

-a2 a2 -1 

- 2 p a 2  1 a -2p 2 

0 0  

0 0  

0 0  

0 0  

0 0 0  

0 0 0  

0 0 0  

-1 0 0 

( 3 . 2 1 )  

(3.22) 

(3.23) 

x3 

x4 :j 
Constructing a transformation  matrix P such  that 

2 L 

where A i s  a diagonal  matrix  containing  the  eigenvalues of A , one 

can  find  the  matrix A 

2 

A =  PAP-^ (3.24) 

11 



where 

4. DERIVATION OF  STABILITY CONDITION 

and w(5) will  be  assumed to have a Guassian  distribution.  Obviously 

K represents  the  root  mean  square of the  imperfections. 

F o r  a function f(x) with  Gaussian  distribution 
1 

E{ If(,) 1 } = [Rf(0)]' 

In  the  case of the  cylindrical  shell, 

and 

and 

After  rather  cumbersome  integrations 

1 2  



I 

{ "- [(bt8)(MX)-(b-@)(L-N)] - - [(a-E )(L-M)+(a+E)(K-N)]} 
dTq3 4iqT 

1 2a +b 1 b 

a(a +b ) x2} 
2 2  

2 2  t *{- " 

{L [-(a-E)(M+L)t(at& 
4KiT 

1 b 1 b2 } . + ${- - - - 
a2tb2 a(a tb ) 

2 2  

c- 1 [(bte)(M-K)t(b-e)(L-N)]- 2 [(E -a)(MtL)+(atE)vtN)]} 
l5q- rn 

and 

13 
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1-2p 2a t b  2 2  
t ${- 1t2p b t - -} 

a ( a   t b  ) a t b  2 2  2 2  

{ 3 [-(a-E)(MtL) t (~+E)( IU-N)]  - ~ [ ( b t 8 ) ( M - K ) t ( b - 8 ) ( L - N ) ] }  
diq3 m 

+ $ {  1-2P b  1 t 2 p  t -  b2 } . 
a + b   a ( a   t b  ) 

2 2   2 2  

{H [ (btB)(M-K) t (b-B)(L-N)]t  - 1t2p [ (E 

diq3 m 
(4.7) 

where 

K =  1 

( a t & )   t ( b t 8 )  
2 2 M =  1 

(a- E) t(b-t-8) 
2 2 

N =  1 

( a t &  ) t (b-8)  
2 2 L =  1 

( a - E )  +(b-8) 
2 2 

To complete  the  stability  analysis  established  in  part I, one has  to 

find  the  Hermitian  matrix V such  that 

A-"V t VA = -I 
.b 

where A is formulated  as shown in  (3.24).  Then one has  to  find  the 

transformation  matrix @ such  that 

where p are  the  eigenvalues of V. Let G1 and G2  be the  following i 
matr ices  

0 0 0 0  

14 



Then, 

and 

Let q y )  be the  eigenvalues of B1 and q12) the  eigenvalues of B2. 

The  stability  condition  for  the  cylindrical  shell  will  then  be 

Now from  (4.3),  (4.4), (4.6) and  (4.7), it is   easily  seen  that  

where C  and C are  constants. 

Introducing  these  relations  into  (4.1 l ) ,  yields 
1 2 

This  is  the  desired  stability  condition. 

5. NUMERICAL EXAMPLE 

In order  to  evaluate  the  stability  boundary  determined  in 

equation  (4.12) a specific  numerical  example  has  been  carried  out. 

The  following  parameters  were  used  in  the  calculation. 

R/h = 800 

v = 0.3 

E = 0.2 

e = 1.0 

The  data ( E ,  e )  for  the  correlation  function of the initial imperfections 

were  selected so that  the  peak of the power  spectrum would  be in the 

neighborhood of t he  peak of the  response  kernel  for Wo(E). This 

15 



will  assure  consideration of the  most  critical  situation.  The  numer- 

ical  evaluation  determines  the  following  relation. 

The  shell  will  remain  stable  as  long  as K ( P ) <  %(P) .  
The  calculation  was  carried  out  varying  the  wave  number a! 

in the  vicinity of a! = *. The  stability  boundary  obtained is shown  in 

Figure 1 This  result  is  similar  qualitatively  to  the  deterministic 

cases  associated with  sinusoidal  imperfections. 
1 

It should be pointed  out  that  the  imperfections  at  particular 

points  might be higher  than K by a factor of 10  or  more.  

6. CONCLUDING R E M A R K S  

The  stability  condition  is  only a sufficient  criteria  for  the 

stability of the  shell.  The  buckling  problem  is  still  open  for  sharper 

conditions,  nevertheless  the  present  condition  does not require  any 

further  assumptions  with  respect  to P or  the power  spectrum  func- 

tions of the  initial  imperfections. 

It should be pointed  out  that  for  certain  particular  cases a 

sharper  stability  condition  can be obtained  by  means of other  tech- 

niques.  For  example  where  the  load  is  close  to  the  linear  critical 

one  and  the  power  spectrum  function of the  imperfections  varies 

slowly  in  the  vicinity of the  axisymmetric  response  function, 

the  case  can be solved in a simplified  manner,  considering a narrow 

band filter  technique.  The  stability  condition  obtained  will be 

sharper  than  that  obtained by Lyapunov's  method. 

After  completion of the  present  report  the  author's  attention  was 

drawn  to a study  carried  out  at  Harvard (15) on the  same  subject 

using  different  techniques. At  the  present  time no comparison of 

results  has  been  made. 
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